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Stereospecific Total Synthesis of Gibberellic Acid 

Sir: 

This communication describes the completion of the ste­
reospecific total synthesis of gibberellic acid (GA3) (1) from 
a key tricyclic intermediate (2) which is readily accessible by 

the approach detailed in the preceding publication.1 In addition 
we disclose a new facet of the chemistry of gibberellic acid 
which allows access to derivatives in which the C(7) substituent 
on ring B is in the unnatural (and generally less stable2) a or­
ientation and which also provided useful direct correlation of 
GA3 with a number of advanced synthetic intermediates. 

Deprotonation of the hydroxy diene 2 with 1.0 equiv of n-
butyllithium in tetrahydrofuran (THF) at —40 °C followed 
by acylation with 1.55 equiv of rnmir-2-chloroacrylyI chloride3 

at -40 0C for 0.5 h afforded the ester 3 in ~80% yield (~62% 
overall from the THP ether of 2).4 When 3 was heated in 
benzene solution containing ~100 equiv of propylene oxide (as 
a hydrogen chloride scavenger) in a sealed tube at 160 0C for 
45 h under argon the pure crystalline lactone 4, mp 149-150 
0C, could be obtained in 55% yield after recrystallization.5 The 
stereochemistry of 4 is assigned from the supposition of con­
certed, a-face, "endo" internal Diels-Alder addition (there 
was no evidence for the formation of an appreciable amount 
of any stereoisomer of 4); it is supported by 1H NMR data and 
also by subsequent transformation to GA3. Treatment of the 
adduct 4 with 2.2 equiv of lithium isopropylcyclohexylamide 
and 5 equiv of hexamethylphosphoramideinTHFat —78 0C 
for 50 min followed by reaction with 5 equiv of methyl iodide 
at —78 to 0 0C over 12 h afforded cleanly the methylated 
lactone 5 (~75% yield). At this stage the MEM6 protecting 
group was removed from 5 by stirring in dry chloroform-
ether-nitromethane (15:5:1 by volume) with 25 equiv of finely 
powdered anhydrous zinc bromide at 23 0C for 3 h to yield 
hydroxy lactone 6 (~70% after chromatography). The IR, 1H 
NMR, UV, and mass spectra and the TLC mobility of this 
material were identical with those of a sample of optically 
active 6 obtained from natural gibberellic acid as described 
below. 

The synthetic (±)-hydroxy lactone 6 was resolved using a 
novel procedure designed to take advantage of the lone (ter­
tiary bridgehead) hydroxyl in 6. Exposure of 6 to a large excess 
of phosgene and 3 equiv of 4-dimethylaminopyridine in dry 
methylene chloride at 23 0C for 36 h gave, after rapid filtration 
through dry Celite and concentration in vacuo, crude chloro-
formate 77 which was directly treated with (—)-a-phenyleth-
ylamine ( [«] 2 5D —41.7° in benzene) to provide after isolation 
a mixture of two diastereomeric urethanes (8) (95% total yield) 
which could be separated cleanly by chromatography on silica 
gel using 1:1 ethyl acetate-hexane for elution (TLC Rj values 
in this solvent system, 0.24 and 0.20). The less polar diaste-
reomer, [«]2 5D +59° (c 0.44, CHCI3), was identical spectro-
scopically (IR, 1H NMR, mass spectrum) and chromato­
graphically with urethane prepared from hydroxy lactone 6 
from natural GA3 and (—)-«-phenylethylamine which showed 
M25O +61° (c 0.42, CHCl3). Reaction of this less polar 
synthetic urethane 8 with 5 equiv of triethylamine and 3 equiv 
of trichlorosilane in dry benzene at 25 °C for 60 h8 afforded 
in 95% yield resolved hydroxy lactone 6, mp 211-212 0C, 
[«]20

D +162° (c 0.58, CHCl3), identical in all respects (IR, 
1H NMR, mass spectrum, TLC high pressure liquid chro­
matography) with the hydroxy lactone 6 derived from natural 
GA3 which showed [«]20

D+161° (c 0.49, CHCl3). 
The optically active lactone 6 was hydrolyzed to the corre­

sponding hydroxy acid salt by heating at reflux with excess 1.0 
N aqueous potassium hydroxide for 45 min (argon atmo­
sphere) and the resulting solution was treated at 23 °C with 
2.07 equiv of 0.013 M sodium ruthenate9 in 1 N aqueous so­
dium hydroxide for 2.5 h. Filtration through Celite, acidifi­
cation to pH 3 at 0 0C, and extraction afforded upon isolation 
the diacid 9, spectroscopically and chromatographically 
identical with the diacid obtained from GA3 (see below); the 
corresponding dimethyl esters (from excess CH2N2 in ether) 
were also identical. The formation of diacid 9 clearly proceeds 
by way of the intermediate acid aldehyde which undergoes 

0002-7863/78/1 500-8034S01.00/0 © 1978 American Chemical Society 



Communications to the Editor 8035 

3 R=CI H 
X=C-

H' 1CO 

JL R = H 
10 R = CH3 

14 15 

base-catalyzed epimerization to the more stable 6/3-formyl 
derivative and then further oxidation to the observed product.10 

Selective monoesterification of the diacid was accomplished 
in THF by treatment with triethylamine (1.5 equiv) and p-
toluenesulfonyl chloride (1 equiv) at —78 0C for 0.5 h and —50 
0C for 2 h (to form the mixed sulfonic anhydride), subsequent 
quenching with excess methanol at —50 0C initially, and then, 
after warming to 23 0C, stirring for a further 2 h. Chroma­
tography afforded the monoester 10 as a solid foam, [a]20o 
—21° (c4.9, THF), identical in all respects with the compound 
obtained from GA3 as described earlier." From this optically 
active intermediate (1O)12 the synthesis of GA3 is completed 
by the previously described11 route which includes (1) hy-
droxylactonization of 10 with m-chloroperbenzoic acid to form 
ll;13 (2) lactone saponification and iodolactonization of 11 to 
give the iodolactone 12; (3) in one flask, trifluoroacetylation 
of 12 to 13, reduction with zinc to eliminate the 1-iodo and 
2-trifluoroacetoxy substituents and bicarbonate treatment to 
saponify the 3-trifluoroacetate forming GA3 methyl ester; and 
finally (4) conversion of GA3 methyl ester to the free acid 1 
using sodium «-propyl mercaptide in hexamethylphosphora-
mide14atO°C. 

The transformation of gibberellic acid 1 to the key inter­
mediate 6 and several other gibberellins having the C(7) sub-
stituent a-oriented at C(6) was achieved by the use of a novel 
strategy for effecting the 6/3 -» 6a epimerization which is 
normally contrathermodynamic in this series. 

Saponification of the acid ester 10'5 by heating at reflux 
with excess 1 N aqueous potassium hydroxide for 40 min af­
forded after acidification and isolation the diacid 9 (95% yield), 
[a]20D -25.5° (c 2.4, THF), which could be reesterified with 
excess diazomethane to the same dimethyl ester obtained by 
methylation of 10 (indicating that no epimerization at C(6) 
occurs in the saponification). Reaction of the diacid 9 with 10 
equiv of triethylamine and 1 equiv of A'./V'-dicyclohexyl car-
bodiimide in THF at reflux for 7 h furnished, upon workup and 
chromatography on silica gel, the anhydride 15, mp 167-168 
0C, [a]20

D +268° (c 9.3, CHCl3) (73% yield). The stereo­
chemistry of the anhydride, anticipated to be as shown in 15 
on geometrical grounds, was shown by methanolysis 
(CH3OH-C5H5N) and methylation of the resulting acid-ester 
with diazomethane to produce a dimethyl ester stereoisomeric 
with that obtained by methylation of 9 or 10.'6 The success of 
the 6/3 —• 6a epimerization involved in the formation of the 
anhydride 15 depends on activation of the C(6) carboxylic acid 

S R = MEM 
^ R = H 
I R = COCI 
IR=CONHCHPh 

CH3 

16 12 

function under equilibrating conditions (triethylamine catal­
ysis) and subsequent capture of the C(6) a-oriented carbonyl 
by the 4a-carboxylic group. Reduction of 15 with ~0.6 mol 
equiv of lithium borohydride in dimethoxyethane at -25 0C 
for 1.5 h yielded, upon acidification with acetic acid, workup, 
and chromatography on silica gel, the lactone 6 (50%) together 
with a structurally isomeric lactone (16, 16%); Rj values for 
6 and 16 were 0.74 and 0.85, respectively (silica gel plates, 
ethyl acetate-acetic acid, 95:5). The isomeric lactone 16, mp 
171 0C, [a]20

D +133° (c 8.7, CHCl3), was synthesized un­
ambiguously from the ester acid 10 by the following sequence: 
(1) reaction of the tetra-rt-butylammonium salt of 10 in dry 
THF with 1 equiv of mesitylenesulfonyl chloride at —78 —* 23 
0C over 2 h to form the mixed sulfonic anhydride; (2) reduction 
of the activated 4-carboxylic group to a 4-hydroxymethyl group 
(without isolation) at 0 0C by addition of excess sodium 
borohydride and reaction at 0 0C for 1 h; and (3) epimerization 
at C(6) and concomitant lactonization of the resulting dihy-
droxy ester (14) by heating at reflux with sodium methoxide 
in absolute methanol for 48 h. 

Lithium borohydride reduction of either lactone 6 or 16 
afforded the triol 17 (colorless, foam), [a]20

D -17.0° (c 3.5, 
THF), oxidation of which with chromic acid (two phase, 
ether-water) led exclusively to lactone 16 (no detectible 
6).17 

The research results described in this and the foregoing 
paper mark the achievement of one of the more intriguing and 
salient objectives in the area of organic synthesis. They also 
provide a basis for further synthetic and transformational in­
vestigations relating to gibberellic acid, and we hope to report 
on the ongoing work in this area in due course. lsi9 
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A Highly Efficient Total Synthesis 
of (±)-Lycopodine 

Sir: 

Lycopodine (1), the archetypal Lycopodium alkaloid,1 has 
been known since 1881,2 although its full structure was not 
established until I960.3 Intensive synthetic work during the 
1960s4 resulted in two total syntheses of the alkaloid which 
were communicated in 1968.5 An earlier approach resulted in 
the synthesis of the unnatural diastereomer 12-epilycopodine 
(2).6 A recent communication reports a synthesis of racemic 
anhydrolycodoline.7 Since natural anhydrolycodoline is hy-
drogenated to 2 and 1 in a ratio of 6.5:1,8 this work constitutes 
a further formal synthesis of lycopodine. We wish to com­
municate a highly efficient stereospecific total synthesis of 
lycopodine which is promising for application to the synthesis 
of some of the many other members of this important class of 
alkaloids.1 

Cyanoenone 39 is converted into cyanodione 4 by stereose­
lective trans addition10 of lithium dimethallylcopper (ether, 
-78 0C; 64%)," followed by ozonolysis (O3, CH3OH, -78 
°C; 87%), or by conjugate addition of the cuprate derived from 
the lithiated /V./V-dimethylhydrazone of acetone, followed by 
aqueous hydrolysis ((1) THF, -78 0C, 4 h; (2) Cu2Cl2, THF, 
H2O, pH 7, 25 0C, 16 h; 60%).n Both procedures afford cy­
anodione 4 as a separable mixture of C2 epimers, in an ap­
proximate equimolar ratio. However, we have been unable to 
detect, at this stage or any subsequent stage, C3-C, cis dia-

4 : 

5 : 

§ ! 

7 : 

X = O ; Y = CN 

X= (CH 2 O) 2 ; Y = CN 

X = (CH 2 O) 2 ; Y = CO2H 

X= (CH 2 O) 2 ; Y = CONH ( CONH(CH2I3OCH2C6H5 

X= (CH 2 O) 2 ; Y = C H 2 N H ( C H 2 I 3 O C H 2 C 6 H 5 

X= (CH 2 O) 2 ; Y = CH2NHCH2C6H5 

^ 

stereomers. Cyanodione 4 is converted via cyano diketal 5 
(HOCH2CH2OH,p-TsOH, C6H6, reflux; 99%) to diketal acid 
6 (KOH, H2O, C2H5OH, reflux, 16 h; 90%). Treatment of 
acid 6 with ethyl chloroformate in the presence of triethyl-
amine, followed by 3-benzyloxypropylamine (THF, —10 0C; 
88%),l3 affords amide 7 which is reduced to secondary amine 
8 (LiAlH4, THF, reflux, 16 h; 99%). 

Treatment of amino diketal 8 with HCl in methanol results 
in slow intramolecular Mannich cyclization (3.2 M HCt, re­
flux, 14 days), affording a single tricyclic amino ketone (10) 
in 65% yield. Although compound 8, like compounds 4-7, is 
an equimolar mixture of C2 epimers, none of the 12-epi dia­
stereomer (lycopodine numbering) has been found in the re­
action product. This kinetic stereoselectivity was anticipated14 

and is also observed in cyclization of the analogous N-ben-
zylamine 9, which affords tricyclic amino ketone 11, uncon-
taminated by its diastereomer, under similar (but less strin­
gent) conditions (2.2 equiv of HCl, CH3OH, reflux, 48 h; 
66%). 

Catalytic debenzylation of 10 (H2O, C2H5OH, HCl, H2, 
Pd; 96%) affords crystalline alcohol 12 (mp 86-87 0C), which 
undergoes Oppenauer oxidation (benzophenone, t-C^HgOK, 
C6H6, reflux, 30 min)15 with subsequent intramolecular al-
dolization and dehydration to afford racemic dehydrolyco-
podine16 (13, mp 104-105 0C; Xmax 245 nm (e 5000)) in 72% 
yield. Catalytic hydrogenation of 13 (H2, Pt, C2H5OH) affords 
racemic lycopodine (1, mp 130-131 0C (lit.5a mp 130-131 
0C)) in 87% yield. The synthetic material produced in this 
manner is identical with a sample of natural lycopodine by 
infrared and 180-MHz 1H NMR spectroscopy. 

The efficiency of the current synthesis is demonstrated by 
the high overall yield (17.7%fromenone3, 11.1% from dihy-
droorcinol17) and by the fact that no other lycopodine diaste­
reomer may be detected in the final product, even though 
isomer separations are not carried out at any point during the 
synthesis. In one continuous run, we have prepared 1.2 g of 
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